II B.Tech - I Semester -Regular / Supplementary Examinations
 DECEMBER 2023

CIRCUIT THEORY
 (ELECTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours
Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	An inductive coil takes 10A and dissipates 1000watts when connected to a supply of $250 \mathrm{~V}, 25 \mathrm{~Hz}$. Calculate the (i) impedance (ii) effective resistance (iii) reactance (iv) inductance (v) power factor.	L3	CO 2	7 M
	b)	For a load, $\quad V_{r m s}=110 \angle 85^{\circ} \mathrm{V}$, $I_{r m s}=0.4 \angle 15^{0} \mathrm{~A}$. Determine i) Active power ii) Reactive power iii) Apparent power.	L3	CO 2	7 M
OR					
2	a)	A two element series circuit is connected across an AC source given by $\mathrm{v}=200 \sqrt{ } 2 \sin \left(314 \mathrm{t}+20^{\circ}\right)$. The current in the circuit is found to be $\mathrm{i}=10 \sqrt{ } 2 \cos \left(314 \mathrm{t}-25^{\circ}\right)$. Determine the parameters of the circuit. Also determine the power factor, real power and reactive power taken by the circuit	L3	CO 2	7 M
	b)	What is impedance diagram? Derive the expression for impedance of a RLC series circuit.	L3	CO 2	7 M

UNIT-II					
3	a)	In a series resonant circuit prove that resonant frequency is the geometric mean of two half power frequencies.	L3	CO3	7 M
	b)	A series RLC circuit with $\mathrm{R}=100 \Omega, \mathrm{~L}=0.5 \mathrm{H}$ and $\mathrm{C}=40 \mu \mathrm{~F}$ has an applied voltage of 50 V with variable frequency. Calculate (i)Resonant frequency, (ii)Current at resonance, and (iii) Voltage across R, L and C	L3	CO 3	7 M
OR					
4	a)	Derive the relation between the resonance frequency and bandwidth of resonance circuit	L3	CO3	7 M
	b)	Verify reciprocity theorem for the network shown in the figure.	L3	CO 3	7 M
UNIT-III					
5	a)	If $Z_{11}=3 \Omega, Z_{12}=2 \Omega, Z_{21}=3 \Omega$ and $Z_{22}=1 \Omega$, find the Y-parameters and ABCD parameters.	L3	CO 2	7 M
	b)	Obtain the Y-parameters of a Two Port network shown in figure.	L4	CO5	7 M
OR					
6	a)	Determine h-parameters and impedance parameters for the following network.	L4	CO5	7 M

	b)	Derive the expression for Coefficient of Coupling.	L2	CO1	7 M
UNIT-IV					
7	a)	In the following network switch K is closed at $\mathrm{t}=0$ with zero current in the inductor. Find the values of $i, \frac{d i}{d t}$ and $\frac{d^{2} i}{d t^{2}}$ at $\mathrm{t}=0^{+}$.	L4	CO4	7 M
	b)	In the circuit shown in the figure, find the transient voltage across R and L after the switch is closed at time $\mathrm{t}=0$. Assume the initial current through the inductor before the switch is closed.	L4	CO 4	7 M
OR					
8	a)	Derive the expression for $i(t)$ in the given circuit for $t>0$. assume that there is no charge on the capacitor and no current passing through the inductor initially	L4	CO4	7 M

