II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2023

CIRCUIT THEORY (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

Max

Max. Marks: 70

			BL	CO	Max.		
			DL		Marks		
	UNIT-I						
1	a)	An inductive coil takes 10A and dissipates	L3	CO2	7 M		
		1000watts when connected to a supply of					
		250V, 25Hz. Calculate the (i) impedance					
		(ii) effective resistance (iii) reactance					
		(iv) inductance (v) power factor.					
	b)	For a load, $V_{rms} = 110 \angle 85^{\circ} V$,	L3	CO2	7 M		
		$I_{rms} = 0.4 \angle 15^{0}$ A. Determine i) Active power					
		ii) Reactive power iii) Apparent power.					
OR							
2	a)	A two element series circuit is connected	L3	CO2	7 M		
		across an AC source given by					
		$v=200\sqrt{2}\sin(314t+20^\circ)$. The current in the					
		circuit is found to be					
		$i=10\sqrt{2}\cos(314t-25^\circ)$. Determine the					
		parameters of the circuit. Also determine the					
		power factor, real power and reactive power					
		taken by the circuit					
	b)	What is impedance diagram? Derive the	L3	CO2	7 M		
		expression for impedance of a RLC series					
		circuit.					
Page 1 of 4							

	UNIT-II						
3	CO3	7 M					
	a)	In a series resonant circuit prove that resonant frequency is the geometric mean of two half	L3	000	, 1,1		
		power frequencies.					
	b)	A series RLC circuit with R= 100Ω , L= $0.5H$	L3	CO3	7 M		
	,	and C=40 μ F has an applied voltage of 50V					
		with variable frequency. Calculate					
		(i)Resonant frequency, (ii)Current at					
		resonance, and (iii) Voltage across R, L and C					
		OR					
4	4 a) Derive the relation between the resonance		L3	CO3	7 M		
		frequency and bandwidth of resonance circuit					
	b)	Verify reciprocity theorem for the network	L3	CO3	7 M		
		shown in the figure.					
		ξ2 Ω					
		20 A (Δ) = 4 Ω					
		2 Ω V ₁					
		UNIT-III					
5	a)	If $Z_{11} = 3 \Omega$, $Z_{12} = 2 \Omega$, $Z_{21} = 3 \Omega$ and $Z_{22} = 1 \Omega$,	L3	CO2	7 M		
		find the Y-parameters and ABCD parameters.					
	b)	Obtain the Y-parameters of a Two Port	L4	CO5	7 M		
		network shown in figure.					
		\downarrow^{I_1} \downarrow^{I_2} \downarrow^{I_2}					
		6Ω 6Ω					
		$V_1 \qquad \lessapprox 12 \ \Omega \qquad V_2$					
	OR						
6	a)	Determine h-parameters and impedance	L4	CO5	7 M		
		parameters for the following network.					
		$+ \circ \rightarrow \sim \sim$					
		412 \$60					
		\dot{V}_1 \dot{V}_2					
		$I = 3V_2$					
		-00					

	b)	Derive the expression for Coefficient of Coupling.	L2	CO1	7 M
		UNIT-IV		<u> </u>	
7	a)	In the following network switch K is closed at $t=0$ with zero current in the inductor. Find the	L4	CO4	7 M
		values of $i, \frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at t=0 ⁺ .			
		$12V$ $+$ $ K$ $R = 8\Omega$ L = 0.2H			
	b)	In the circuit shown in the figure, find the transient voltage across R and L after the	L4	CO4	7 M
		switch is closed at time t=0. Assume the initial			
		current through the inductor before the switch			
		is closed.			
		$100 \mu(t) \xrightarrow{+}_{-} \qquad i \qquad $			
	T	OR		,	
8	a)	Derive the expression for i(t) in the given	L4	CO4	7 M
		circuit for t>0. assume that there is no charge			
		on the capacitor and no current passing through			
		the inductor initially $t=0$			
		$\begin{array}{c} + v_{C}(t) - R \\ \hline \\ C + v_{R}(t) - \\ + \\ \psi_{S} \\ i(t) \\ \end{array} \\ \begin{array}{c} + \\ v_{L}(t) \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \\ v_{L}(t) \\ \end{array} \\ \begin{array}{c} + \\ v_{L}(t) \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \\ v_{L}(t) \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \\ v_{L}(t) \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \\ v_{L}(t) \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \\ v_{L}(t) \\ \end{array} \\ \end{array} \\ \end{array} $			
		$R = 5,000 \Omega$ L = 1 H C = 1 μ F V _S = 25 V			

	b)	In the sinestic charge in the figure excitch to is	T A	CO4	7 14
	b)	In the circuit shown in the figure, switch 's' is	L4	CO4	7 M
		in position 1 for a long time and brought to			
		position 2 at time $t=0$. Find the transient			
		current.			
		$90 \vee \underbrace{+}_{=} \\ 30 \vee \underbrace{-}_{30 \vee -} \\ 30 \vee \underbrace{-}_{i} \\ i \\$			
		UNIT-V			
9	a)	A 3-phase, 440V load has a power factor of	Ι <i>Λ</i>	CO4	7 M
	<i>a)</i>	0.4. Two wattmeters are connected to measure	LT	COT	/ 1/1
		the power. If the input power be 10 kW, find			
-	1-)	the reading of each instrument.	ТА	CO^2	7 1
	b)	Develop Relation between line and phase	L4	CO3	7 M
		voltages and currents in a delta connected			
		3-phase balanced system.			
		OR			
10	a)	A balanced delta connected load of $(8 + j6) \Omega$	L4	CO4	7 M
		per phase is connected to a 3-phase, 50 Hz,			
		230V supply. Calculate (i) Line current			
		(ii) Reactive volt-ampere, (iii) power factor,			
		and (iv) Total volt-ampere.			
	b)	Two wattmeters are used to measure power	L4	CO4	7 M
		input to a 1.5kV, 50 Hz, 3-phase motor running			
		on full load at an efficiency of 85%.			
		Their readings are 250kW and 80kW			
		respectively. Calculate (i) input power			
		(ii) Power factor, and (iii) Line current			